Code: ME6T4

III B.Tech - II Semester - Regular/Supplementary Examinations March 2018

REFRIGERATION AND AIR CONDITIONING (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

11x 2 = 22 M

1.

- a) Define the term "Ton of refrigeration"
- b) A machine working in a carnot cycle operates between 305 K and 260 K. Determine the cop when it is operated as
 - i) Refrigerating machine, ii) A heat pump
- c) Sketch the Bell coleman cycle on P-V and T-S Diagrams.
- d) Mention the advantages of vapour compression refrigeration system over air refrigeration system.
- e) What are the essential properties of good refrigerant?
- f) Discuss the function of absorber in vapour absorption refrigeration system.
- g) What is the principle of a steam jet refrigeration system?
- h) Define the terms i) Specific humidity and ii) absolute humidity
- i) What do you understand by effective room sensible heat factor?
- j) State the factors that determine human comfort.
- k) Give the classification of fans.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) A refrigerator working on Bell coleman cycle operates between pressure limits of 1.05 bar and 8.5 bar. Air is drawn from the cold chamber at 10° C, compressed and then it is cooled to 30° C before entering the expansion cylinder. The expansion and compression follows the law PV^{1.3}= Constant. Determine the theoretical COP of the system.
 - b) Explain the working of Reduced ambient Air cooling system used for air crafts with a neat sketch. 8 M
- 3. a) A vapour compression refrigerator uses methyl chloride (R-40) and operates between temperature limits of -10^o C and 45^o C. At entry to the compressor, the refrigerant is dry saturated and after compression, it acquires a temperature of 60^o C. Find the COP of the refrigerator. The relevant properties of methyl chloride are as follows.

Saturation	Enthalpy in Kj/Kg		Entropy in KJ/Kg K	
temperature in ⁰ C	Liquid	Vapour	Liquid	Vapour
-10	45.4	460.7	0.183	1.637
45	133.0	483.6	0.485	1.587

	a neat sketch.	8 M
4.	a) Describe the working of Li Br – water absorption	
	refrigeration system (two shell) with a neat diagram.	8 M
	b) Explain principle and operation of Vortex tube.	8 M
5.	a) Calculate:	
	i) Dew point temperature	
	ii) Relative humidity	
	iii) Specific humidity	
	iv) Degree of saturation	
	v) Enthalpy of mixture per kg of air	
	when the dry bulb temperature is 30°C, wet bulb	
	temperature is 20° C and the barometer reads 740 mm	of
	Hg.	8 M
	b) Explain the procedure to draw a Grand sensible heat	
	factor(GSHF) line on a psychrometry chart.	8 M
6.	a) Explain the difference between winter air conditioning	g and
	summer air conditioning.	8 M
	b) Describe a centrifugal fan with the help of a neat sketo	ch.
		8 M

b) Explain the working of Thermostatic expansion valve with